早期战舰的中央火控系统-《清末恶匪》
第(2/3)页
这种光学测距仪在能见度良好的情况下,能对海陆目标提供足够精确地数据,误差也在可以容忍的范围之内。后来立体式光学测距仪也发展出来,除了能精确测量海陆目标之外,还可以测快速移动的空中目标,近代就是测距的雷达了,那是能超越火炮射击距离之外的精确测距,那的到二战期间才行。
有了精确地距离,但是舰炮的命中率依然不高,这里面缺少一个重要的装置,计算装置。
谈计算装置之前,先说下纸面计算法,简单来说纸面计算法就是假设目标的移动方向和距离,然后计算火炮的仰角和回旋分别到达什么位置就可以准确的命中目标,这种计算方法在实战中没有任何意思,因为太花时间,既不能连续解算修正初始误差,更是不能跟随目标位置的改变而变更计算结果,不过纸面计算法也不是没用,到现在依然用来做射击后的分析。
到了二十世纪初,作图法为计算工作带来了改进,作图法就是在图纸上标示出一连串的目标距离和方位点,然后将这些点连成一条线就可以大致判断目标的航向和航速,这个方法可以判定目标的运动规律,然后根据规律有效的预测自己的弹丸飞行时间以及飞行的距离,在实用上有一阵子主炮塔的火炮射击就是用这种方法控制的。
这种作图法的出现为以后的机械式射程计算仪建立了基础原理。
简单来说这个原理就是假设当前跟目标的距离已经知道,再假设跟目标的距离变化和方向也由敌我两舰航向航速求得,再假设这个距离变动率在计算过程中是不变的,这样只要把任何一刻的距离变化值加上由观测所得的当前距离初始值,就可以求出那个时刻的射程,这种计算方式可以使得射程在解算过程中不断的更新,而且还可以预测弹丸在飞行过程中的变化。
这样最基本的射程计算仪就可以由观测所得的当前距离值,判定的距离变化率,将距离变化率乘上累计时间,就可以生成当前的距离值,当然射程计算仪内要连接一个时钟以加上时间因素。
同样也可以用在方位上,观测所得的相对方位值就是计算的起点,方位变动率(方位变化的程度)乘上累计时间,最后求出的增加值就可以用来修正方位起始值。
这种最简单的机械射程计算仪就可以达成,计算距离变动率,计算方位变动率,以及生成当前距离的三项功能。
火控中最重要的计算装置,这个装置要计算敌我相对运动的快速变化,这里面包括两个部分,一个部分是从最初获得测量数据到根据这个数据进行计算并且将数据传递给火炮,火炮根据指令开火的这一段时间。第二部分就是弹丸飞行时间。
在这两个时间段内两个相对运动的战舰带来的影响,如果不进行预估并且计算的话根本无法打中目标。
第(2/3)页